Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37763905

RESUMO

Biomimetic switchable adhesion interfaces (BSAIs) with dynamic adhesion states have demonstrated significant advantages in micro-manipulation and bio-detection. Among them, gecko-inspired adhesives have garnered considerable attention due to their exceptional adaptability to extreme environments. However, their high adhesion strength poses challenges in achieving flexible control. Herein, we propose an elegant and efficient approach by fabricating three-dimensional mushroom-shaped polydimethylsiloxane (PDMS) micropillars on a flexible PDMS substrate to mimic the bending and stretching of gecko footpads. The fabrication process that employs two-photon polymerization ensures high spatial resolution, resulting in micropillars with exquisite structures and ultra-smooth surfaces, even for tip/stem ratios exceeding 2 (a critical factor for maintaining adhesion strength). Furthermore, these adhesive structures display outstanding resilience, enduring 175% deformation and severe bending without collapse, ascribing to the excellent compatibility of the micropillar's composition and physical properties with the substrate. Our BSAIs can achieve highly controllable adhesion force and rapid manipulation of liquid droplets through mechanical bending and stretching of the PDMS substrate. By adjusting the spacing between the micropillars, precise control of adhesion strength is achieved. These intriguing properties make them promising candidates for various applications in the fields of microfluidics, micro-assembly, flexible electronics, and beyond.

2.
Small ; 19(22): e2300469, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855777

RESUMO

Microactuators can autonomously convert external energy into specific mechanical motions. With the feature sizes varying from the micrometer to millimeter scale, microactuators offer many operation and control possibilities for miniaturized devices. In recent years, advanced microfluidic techniques have revolutionized the fabrication, actuation, and functionalization of microactuators. Microfluidics can not only facilitate fabrication with continuously changing materials but also deliver various signals to stimulate the microactuators as desired, and consequently improve microfluidic chips with multiple functions. Herein, this cross-field that systematically correlates microactuator properties and microfluidic functions is comprehensively reviewed. The fabrication strategies are classified into two types according to the flow state of the microfluids: stop-flow and continuous-flow prototyping. The working mechanism of microactuators in microfluidic chips is discussed in detail. Finally, the applications of microactuator-enriched functional chips, which include tunable imaging devices, micromanipulation tools, micromotors, and microsensors, are summarized. The existing challenges and future perspectives are also discussed. It is believed that with the rapid progress of this cutting-edge field, intelligent microsystems may realize high-throughput manipulation, characterization, and analysis of tiny objects and find broad applications in various fields, such as tissue engineering, micro/nanorobotics, and analytical devices.

3.
Front Chem ; 10: 1051061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405321

RESUMO

As a typical micro/nano processing technique, femtosecond laser fabrication provides the opportunity to achieve delicate microstructures. The outstanding advantages, including nanoscale feature size and 3D architecting, can bridge the gap between the complexity of the central nervous system in virto and in vivo. Up to now, various types of microstructures made by femtosecond laser are widely used in the field of neurobiological research. In this mini review, we present the recent advancement of femtosecond laser fabrication and its emerging applications in neurobiology. Typical structures are sorted out from nano, submicron to micron scale, including nanoparticles, micro/nano-actuators, and 3D scaffolds. Then, several functional units applied in neurobiological fields are summarized, such as central nervous system drug carriers, micro/nano robots and cell/tissue scaffolds. Finally, the current challenges and future perspective of integrated neurobiology research platform are discussed.

4.
Micromachines (Basel) ; 13(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36296006

RESUMO

Femtosecond laser (FSL) technology has created an evolution in ophthalmic surgery in the last few decades. With the advantage of high precision, accuracy, and safety, FSLs have helped surgeons overcome surgical limits in refractive surgery, corneal surgery, and cataract surgery. They also open new avenues in ophthalmic areas that are not yet explored. This review focuses on the fundamentals of FSLs, the advantages in interaction between FSLs and tissues, and typical clinical applications of FSLs in ophthalmology. With the rapid progress that has been made in the state of the art research on FSL technologies, their applications in ophthalmic surgery may soon undergo a booming development.

5.
Nat Commun ; 11(1): 4536, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913189

RESUMO

Natural musculoskeletal systems have been widely recognized as an advanced robotic model for designing robust yet flexible microbots. However, the development of artificial musculoskeletal systems at micro-nanoscale currently remains a big challenge, since it requires precise assembly of two or more materials of distinct properties into complex 3D micro/nanostructures. In this study, we report femtosecond laser programmed artificial musculoskeletal systems for prototyping 3D microbots, using relatively stiff SU-8 as the skeleton and pH-responsive protein (bovine serum albumin, BSA) as the smart muscle. To realize the programmable integration of the two materials into a 3D configuration, a successive on-chip two-photon polymerization (TPP) strategy that enables structuring two photosensitive materials sequentially within a predesigned configuration was proposed. As a proof-of-concept, we demonstrate a pH-responsive spider microbot and a 3D smart micro-gripper that enables controllable grabbing and releasing. Our strategy provides a universal protocol for directly printing 3D microbots composed of multiple materials.


Assuntos
Biomimética/métodos , Compostos de Epóxi/efeitos da radiação , Fenômenos Fisiológicos Musculoesqueléticos , Polímeros/efeitos da radiação , Robótica/métodos , Soroalbumina Bovina/efeitos da radiação , Biomimética/instrumentação , Compostos de Epóxi/química , Hidrogéis/química , Hidrogéis/efeitos da radiação , Concentração de Íons de Hidrogênio , Lasers , Polimerização/efeitos da radiação , Polímeros/química , Impressão Tridimensional , Robótica/instrumentação , Soroalbumina Bovina/química
6.
Front Chem ; 8: 525, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656183

RESUMO

The past decades have seen growing research interest in developing efficient fabrication techniques for preparing bioinspired graphene surfaces with superwettability. Among the various fabrication methods, laser fabrication stands out as a prominent one to achieve this end and has demonstrated unique merits in the development of graphene surfaces with superwettability. In this paper, we reviewed the recent advances in this field. The unique advantages of laser fabricated graphene surfaces have been summarized. Typical graphene surfaces with superwettability achieved by laser fabrication, including superhydrophobic graphene surfaces, oil/ water separation, fog collection, antibacterial surfaces, surface enhanced Raman scattering (SERS), and desalination, have been introduced. In addition, current challenges and future perspectives in this field have been discussed. With the rapid progress of novel laser physical/ chemical fabrication schemes, graphene surfaces with superwettability prepared by laser fabrication may undergo sustained development and thus contribute greatly to the scientific research and our daily life.

7.
Front Chem ; 7: 506, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380350

RESUMO

As a typical 2D carbon material, graphene, that possesses outstanding physical/chemical properties, has revealed great potential for developing soft actuators. Especially, the unique properties of graphene, including the excellent light absorption property, softness, and thermal conductivity, play very important roles in the development of light-responsive graphene actuators. At present, various light-driven actuators have been successfully developed based on graphene and its derivatives. In this mini review, we reviewed the recent advances in this field. The unique properties of graphene or graphene-related materials that are of benefit to the development of light-driven actuators have been summarized. Typical smart actuators based on different photothermal/photochemical effects, including photothermal expansion, photothermal desorption, photoisomerization, and photo-triggered shape memory effect, have been introduced. Besides, current challenges, and future perspective have been discussed. The rapid progress of light-responsive actuators based on graphene has greatly stimulated the development of graphene-based soft robotics.

8.
ACS Nano ; 13(4): 4041-4048, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30677287

RESUMO

Strategies that can make general materials smart are highly desired for developing artificial shape-morphing systems and devices. However, at present, it still lacks universal technologies that enable designable prototyping of deformable 3D micro-nanostructures. Inspired by natural automation systems, for instance, tendrils, leaves, and flowers deform dynamically under external stimuli by varying internal turgor, we report a dual-3D femtosecond laser processing strategy for fabricating smart and deformable 3D microactuators based on general photopolymers. By programming the size and distributions of voxels at the nanoscale, both the 3D profile and the 3D internetwork of a general photopolymer could be tailored in a controlled manner; thus, 3D microstructures encoded with precisely tailored networks could perform predictable deformations under certain stimuli. Using this dual-3D fabrication approach, energetic 3D microactuators, including a smart microflower, a responsive microvale, and an eight-finger microclaw, that permit controllable manipulation have been successfully developed.

9.
Adv Mater ; 31(5): e1806386, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30536794

RESUMO

Muscles and joints make highly coordinated motion, which can be partly mimicked to drive robots or facilitate activities. However, most cases primarily employ actuators enabling simple deformations. Therefore, a mature artificial motor system requires many actuators assembled with jointed structures to accomplish complex motions, posing limitations and challenges to the fabrication, integration, and applicability of the system. Here, a holistic artificial muscle with integrated light-addressable nodes, using one-step laser printing from a bilayer structure of poly(methyl methacrylate) and graphene oxide compounded with gold nanorods (AuNRs), is reported. Utilizing the synergistic effect of the AuNRs with high plasmonic property and wavelength-selectivity as well as graphene with good flexibility and thermal conductivity, the artificial muscle can implement full-function motility without further integration, which is reconfigurable through wavelength-sensitive light activation. A biomimetic robot and artificial hand are demonstrated, showcasing functionalized control, which is desirable for various applications, from soft robotics to human assists.


Assuntos
Materiais Biomiméticos/química , Grafite/química , Ouro/química , Luz , Modelos Anatômicos , Nanotubos/química , Polimetil Metacrilato/química , Robótica , Condutividade Térmica
10.
Langmuir ; 34(20): 5712-5718, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29706078

RESUMO

Reported here is a high-efficiency preparation method of amorphous nickel phosphide (Ni-P) nanoparticles by intense femtosecond laser irradiation of nickel sulfate and sodium hypophosphite aqueous solution. The underlying mechanism of the laser-assisted preparation was discussed in terms of the breaking of chemical bond in reactants via highly intense electric field discharge generated by the intense femtosecond laser. The morphology and size of the nanoparticles can be tuned by varying the reaction parameters such as ion concentration, ion molar ratio, laser power, and irradiation time. X-ray diffraction and transmission electron microscopy results demonstrated that the nanoparticles were amorphous. Finally, the thermogravimetric-differential thermal analysis experiment verified that the as-synthesized noncrystalline Ni-P nanoparticles had an excellent catalytic capability toward thermal decomposition of ammonium perchlorate. This strategy of laser-mediated electrical discharge under such an extremely intense field may create new opportunities for the decomposition of molecules or chemical bonds that could further facilitate the recombination of new atoms or chemical groups, thus bringing about new possibilities for chemical reaction initiation and nanomaterial synthesis that may not be realized under normal conditions.

11.
Appl Opt ; 56(8): 2157-2161, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28375300

RESUMO

In this paper, a maskless, high efficiency, and flexible technology is developed to fabricate three-dimensional (3D) microstructures on a silicon wafer, which is based on the combination of femtosecond laser modification and subsequent dry etching. The silicon atoms in 2D patterned areas were insufficiently oxidized after femtosecond laser irradiation. Complex 3D structures can be fabricated on the silicon wafer after etching, such as micro gears, comb drive actuators, and micro cantilevers applied in microelectromechanical systems (MEMS) and micro Fresnel zone plates applied in micro optics. What is more, surface roughness of the laser structured wafer can be improved with increased etching time in the dry etching process. This technology shows its unique capacity to fabricate various 3D microstructures for applications in MEMS and micro optics.

12.
Sci Rep ; 5: 17712, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26657990

RESUMO

The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials.

13.
ACS Nano ; 8(7): 6682-92, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24896225

RESUMO

We report polarized femtosecond laser-light-mediated growth and programmable assembly of photoreduced silver nanoparticles into triply hierarchical micropatterns. Formation of erected arrays of nanoplates with a thickness as small as λ/27 (λ, the writing laser wavelength) level is demonstrated. The growth mechanism of nanoplates has been clarified: (i) the excited surface plasmons enhance the local electric field and lead to spatially selective growth of silver atoms at the opposite ends of dipoles induced on early created silver seeds; (ii) the optical attractive force overcomes electrostatic repulsion in the enhanced local electric field to assemble the silver nanoparticles directly. The triply hierarchical micropattern shape and location, the nanoplate orientation, and thickness are all attained in controlled fashion.

14.
Nanoscale ; 4(22): 6955-8, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23044631

RESUMO

Gold nanodots were used as the precursory material to form micronanopatterns under pinpoint scanning by a tightly focused femtosecond laser beam. Different from the widely reported metal ions photoreduction mechanism, here gradient force in an optical trap generated around the laser focus is considered as the major mechanism for particle accumulation (focusing). It has been proven to be an effective method for gold micronanostructure fabrication, and the electronic resistivity of the resulting metals reached as high as 5.5 × 10(-8) Ω m, only twice that of the bulk material (2.4 × 10(-8) Ω m). This merit makes it a novel free interconnection technology for micronanodevice fabrication.

15.
Chem Commun (Camb) ; 48(11): 1680-2, 2012 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-22187098

RESUMO

Silver microflower arrays constructed by upright nanoplates and attached nanoparticles were fabricated inside a microfluidic channel, thus a robust catalytic microreactor for allowing in situ SERS monitoring was proposed. On-chip catalytic reduction shows that the silver microflowers have high catalytic activity and SERS enhancement.

16.
Electrophoresis ; 32(23): 3378-84, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072533

RESUMO

A surface-enhanced Raman scattering (SERS)-active microfluidic device with tunable surface plasmon resonances is presented here. It is constructed by silver grating substrates prepared by two-beam laser interference of photoresists and subsequent metal evaporation coating, as well as PDMS microchannel derived from soft lithography. By varying the period of gratings from 200 to 550 nm, surface plasmon resonances (SPRs) from the metal gratings could be tuned in a certain range. When the SPRs match with the Raman excitation line, the highest enhancement factor of 2×10(7) is achieved in the SERS detection. The SERS-active microchannel with tunable SPRs exhibits both high enhancement factor and reproducibility of SERS signals, and thus holds great promise for applications of on-chip SERS detection.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Dimetilpolisiloxanos/química , Microscopia de Força Atômica , Fenóis/química , Rodaminas/química , Prata/química
17.
Opt Lett ; 36(17): 3305-7, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21886192

RESUMO

Herein, we report a facile approach for rapid and maskless production of subwavelength structured antireflective surfaces with high and broadband transmittance-direct laser interference ablation. The interfered laser beams were introduced into the surface of a bare optical substrate, where structured surfaces consisting of a micropillar array were produced by two-step laser irradiation in the time frame of seconds. A multiple exposure of the two-beam interference approach was proposed instead of multiple-beam interference to simply realize planar patterns of a high aspect ratio. Tall sinusoidal pillars were created and shaped by pulse shot number control. As an example of the application, zinc sulfide substrates were processed with the technology, from which high transmission at an infrared wavelength, over 92%, at normal incidence was experimentally achieved.


Assuntos
Biomimética/instrumentação , Lasers , Fenômenos Ópticos , Absorção , Sulfetos/química , Propriedades de Superfície , Fatores de Tempo , Compostos de Zinco/química
18.
Lab Chip ; 11(19): 3347-51, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21863148

RESUMO

We report here a facile approach for flexible integration of high efficiency surface enhanced Raman scattering (SERS) monitors in a continuous microfluidic channel. In our work, femtosecond laser direct writing was adopted for highly localizable and controllable fabrication of the SERS monitor through a multi-photon absorption (MPA) induced photoreduction of silver salt solution. The silver substrate could be shaped into designed patterns, and could be precisely located at the desired position of the microchannel bed, giving the feasibility for real-time detection during reactions. SEM and TEM images show that the silver substrates were composed of crystallized silver nanoplates with an average thickness of 50 nm. AFM results reveal that the substrates were about 600 nm in height and the surface was very rough. As representative tests for SERS detection, p-aminothiophenol (p-ATP) and flavin adenine dinucleotide (FAD) were chosen as probing molecules for microfluidic analysis at visible light (514.5 nm) excitation, exhibiting an enhancement factor of ~10(8). In addition, the combination of the SERS substrate with the microfluidic channel allows detection of inactive analytes through in situ microfluidic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...